Measurement of inelastic resonance scattering cross section of the ${}^{12}C({}^{12}C,{}^{12}C[0_2^+]){}^{12}C[0_2^+]$ reaction to search for alpha condensation

S. Enyo¹, T. Kawabata², Y. Kanada-En'yo³, K. Yoshida³, Y. Arakawa¹, R. Kongo¹, K. Sakanashi²,

S. Takagi¹, Y. Hijikata¹, R. Matsumoto¹, T. Mikami¹, K. Miyazato¹, T. Doi³, Y. Fujikawa³,

T. Furuno⁴, K. Inaba³, K. Katayama¹, S. Okamoto³, A. Sakaue³

¹Faculty of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

³Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan

⁴Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

One of the theoretically predicted states at low nucleon density is a superfluid condensate of α particles. The 0^+_2 state at $E_x = 7.65$ MeV in ¹²C is well recognized as a 3α condensed state and called Hoyle state [1][2]. Although it is pointed that α condensed states emerge in self-conjugate $A = 4N(N \le 10)$ nuclei [3], there are few experimental data concerning nuclei heavier than ¹²C. In this work, we explored the 6α condensed state in ²⁴Mg by measuring the inelastic resonance scattering cross section of the ¹²C(¹²C, ¹²C[0^+_2])^{12}C[0^+_2] reaction.

According to the calculation by T. Yamada, the excitation energy of the 6α condensed state in ²⁴Mg is predicted 33.4 MeV [3], which corresponds to 39.0 MeV in the beam energy of the ¹²C + ¹²C collision. This 6α condensed state has a large decay width to the ²⁴Mg \rightarrow ¹²C[0⁺₂] + ¹²C[0⁺₂] channel. We focused on this channel and detected 6α emitted from the two ¹²C[0⁺₂]s.

The experiment was performed at the Research Center for Nuclear Physics cyclotron facilities. A ¹²C beam at 57.0 MeV extracted from the AVF cyclotron was transported to the EN course. The beam energy was degraded to 57.0, 49.9, 41.2, 39.7, and 38.1 MeV by using a gas degrader and aluminum degraders. Then the beams bombarded the ¹²C target with a thickness of 0.5 mg/cm². Once the 6 α condensed state is formed and decays into the ¹²C[0₂⁺] + ¹²C[0₂⁺] channel, the emitted two ¹²C[0₂⁺] s immediately decay into $3\alpha + 3\alpha$. In the present measurement, we detected $3\alpha + 3\alpha$ by the two double-sided silicon strip detectors (DSSD) which were located at forward symmetric angles. The angles and distances from the target of the DSSDs are shown in Fig. 1.

Figure 1: Layout of DSSDs

The invariant mass of the ${}^{12}C^*$ was calculated from energy and momentum of 3α , and the excitation energy of ${}^{12}C^*$ was determined. The upper-right and lower-right panels in Fig. 2 show the excitation-energy spectra in ${}^{12}C$ obtained by the left and right DSSDs, respectively, when the beam energy is 57.0 MeV. We clearly observed the peak due to the 0^+_2 state in ${}^{12}C$ at $E_x = 7.65$ MeV. The left panel in Fig. 2 presents a correlation in the excitation energy between two ${}^{12}C^*s$. The ${}^{12}C({}^{12}C,{}^{12}C[0^+_2]){}^{12}C[0^+_2]$ events are successfully identified as shown by the solid line. Finally, we counted the events in which the both two detectors detected 3α from ${}^{12}C[0^+_2]$ and determined cross sections to be $0.58 \pm 0.04 \ \mu b/sr$ and $0.047 \pm 0.004 \ \mu b/sr$ at $E_{beam} = 57.0$ and 49.9 MeV, respectively. At $E_{beam} = 39.7$ and 38.1 MeV, no ${}^{12}C[0^+_2] + {}^{12}C[0^+_2]$ event was observed. The present result is compared with the previous results reported in Refs. [4] and [5] in Fig. 3.

In the present work, we successfully determined cross section of the ${}^{12}C({}^{12}C,{}^{12}C[0_2^+]){}^{12}C[0_2^+]$ reaction at $E_{beam} = 57.0$ and 49.9 MeV which correspond to the excitation energies of $E_x=42.5$ and 38.9 MeV respectively. Although the 6α condensed state in ${}^{24}Mg$ is predicted at $E_x = 33.4$ MeV ($E_{beam} = 39.0$ MeV), we could not determine the cross section at the energy region of interest. Further measurements with high statistics and sensitivity are strongly desired.

Reference

- [1] A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001).
- [2] T. Yamada and P.Schuck, Eur. Phys. J. A 26, 185-199 (2005).
- [3] T. Yamada et al., *Phys. Rev. C* **69**, 024309 (2004).
- [4] A. H. Wuosmaa, et al., Phys. Rev. Lett. 68, 1295 (1992).
- [5] A. H. Wuosmaa, et al., *Phys. Rev. C* 50, 2909 (1994)

Figure 2: Excitation-energy spectra in 12 C when 3α were detected by the two DSSDs : (left) Correlation in excitation energies between two 12 C detected by the left and right DSSDs, (upper-right) excitation energy determined by the left DSSD, (lower-right) excitation energy determined by the right DSSD.

Figure 3: Measured differential cross section of ${}^{12}C({}^{12}C,{}^{12}C[0_2^+]){}^{12}C[0_2^+]$ reaction averaged over $\theta_{cm} = 20^\circ - 105^\circ$ as a function of the center-of-mass energy $E_{cm}(=E_{beam}/2)$.