Measurement of inelastic resonance scattering cross section of the ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]\right)^{12} \mathrm{C}\left[0_{2}^{+}\right]$reaction to search for alpha condensation

S. Enyo ${ }^{1}$, T. Kawabata ${ }^{2}$, Y. Kanada-En'yo ${ }^{3}$, K. Yoshida ${ }^{3}$, Y. Arakawa ${ }^{1}$, R. Kongo 1, K. Sakanashi ${ }^{2}$, S. Takagi ${ }^{1}$, Y. Hijikata ${ }^{1}$, R. Matsumoto ${ }^{1}$, T. Mikami ${ }^{1}$, K. Miyazato ${ }^{1}$, T. Doi ${ }^{3}$, Y. Fujikawa ${ }^{3}$, T. Furuno ${ }^{4}$, K. Inaba ${ }^{3}$, K. Katayama ${ }^{1}$, S. Okamoto ${ }^{3}$, A. Sakaue ${ }^{3}$
${ }^{1}$ Faculty of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
${ }^{2}$ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
${ }^{3}$ Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan
${ }^{4}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

One of the theoretically predicted states at low nucleon density is a superfluid condensate of α particles. The 0_{2}^{+}state at $E_{x}=7.65 \mathrm{MeV}$ in ${ }^{12} \mathrm{C}$ is well recognized as a 3α condensed state and called Hoyle state [1][2]. Although it is pointed that α condensed states emerge in self-conjugate $A=4 N(N \leq 10)$ nuclei [3], there are few experimental data concerning nuclei heavier than ${ }^{12} \mathrm{C}$. In this work, we explored the 6α condensed state in ${ }^{24} \mathrm{Mg}$ by measuring the inelastic resonance scattering cross section of the ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]\right.$reaction.

According to the calculation by T. Yamada, the excitation energy of the 6α condensed state in ${ }^{24} \mathrm{Mg}$ is predicted 33.4 MeV [3], which corresponds to 39.0 MeV in the beam energy of the ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ collision. This 6α condensed state has a large decay width to the ${ }^{24} \mathrm{Mg} \rightarrow{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]+{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]$channel. We focused on this channel and detected 6α emitted from the two ${ }^{12} \mathrm{C}\left[0_{2}^{+}\right] \mathrm{s}$.

The experiment was performed at the Research Center for Nuclear Physics cyclotron facilities. A ${ }^{12} \mathrm{C}$ beam at 57.0 MeV extracted from the AVF cyclotron was transported to the EN course. The beam energy was degraded to $57.0,49.9,41.2,39.7$, and 38.1 MeV by using a gas degrader and aluminum degraders. Then the beams bombarded the ${ }^{12} \mathrm{C}$ target with a thickness of $0.5 \mathrm{mg} / \mathrm{cm}^{2}$. Once the 6α condensed state is formed and decays into the ${ }^{12} \mathrm{C}\left[0_{2}^{+}\right]+{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]$channel, the emitted two ${ }^{12} \mathrm{C}\left[0_{2}^{+}\right] \mathrm{s}$ immediately decay into $3 \alpha+3 \alpha$. In the present measurement, we detected $3 \alpha+3 \alpha$ by the two doublesided silicon strip detectors (DSSD) which were located at forward symmetric angles. The angles and distances from the target of the DSSDs are shown in Fig. 1.

Figure 1: Layout of DSSDs

The invariant mass of the ${ }^{12} \mathrm{C}^{*}$ was calculated from energy and momentum of 3α, and the excitation energy of ${ }^{12} \mathrm{C}^{*}$ was determined. The upper-right and lower-right panels in Fig. 2 show the excitation-energy spectra in ${ }^{12} \mathrm{C}$ obtained by the left and right DSSDs, respectively, when the beam energy is 57.0 MeV . We clearly observed the peak due to the 0_{2}^{+}state in ${ }^{12} \mathrm{C}$ at $E_{x}=7.65 \mathrm{MeV}$. The left panel in Fig. 2 presents a correlation in the excitation energy between two ${ }^{12} \mathrm{C}^{*}$ s. The ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]\right)^{12} \mathrm{C}\left[0_{2}^{+}\right]$events are successfully identified as shown by the solid line. Finally, we counted the events in which the both two detectors detected 3α from ${ }^{12} \mathrm{C}\left[0_{2}^{+}\right]$and determined cross sections to be $0.58 \pm 0.04 \mu \mathrm{~b} / \mathrm{sr}$ and $0.047 \pm 0.004 \mu \mathrm{~b} / \mathrm{sr}$ at $E_{\text {beam }}=57.0$ and 49.9 MeV , respectively. At $E_{\text {beam }}=39.7$ and 38.1 MeV , no ${ }^{12} \mathrm{C}\left[0_{2}^{+}\right]+{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]$event was observed. The present result is compared with the previous results reported in Refs. [4] and [5] in Fig. 3.

In the present work, we successfully determined cross section of the ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]\right)^{12} \mathrm{C}\left[0_{2}^{+}\right]$reaction at $E_{\text {beam }}=57.0$ and 49.9 MeV which correspond to the excitation energies of $E_{x}=42.5$ and 38.9 MeV respectively. Although the 6α condensed state in ${ }^{24} \mathrm{Mg}$ is predicted at $E_{x}=33.4 \mathrm{MeV}\left(E_{\text {beam }}=39.0 \mathrm{MeV}\right)$, we could not determine the cross section at the energy region of interest. Further measurements with high statistics and sensitivity are strongly desired.

Reference

[1] A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001).
[2] T. Yamada and P.Schuck, Eur. Phys. J. A 26, 185-199 (2005).
[3] T. Yamada et al., Phys. Rev. C 69, 024309 (2004).
[4] A. H. Wuosmaa, et al., Phys. Rev. Lett. 68, 1295 (1992).
[5] A. H. Wuosmaa, et al., Phys. Rev. C 50, 2909 (1994)

Figure 3: Measured differential cross section of ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\left[0_{2}^{+}\right]\right)^{12} \mathrm{C}\left[0_{2}^{+}\right]$reaction averaged over $\theta_{c m}=20^{\circ}-105^{\circ}$ as a function of the center-of-mass energy $E_{c m}\left(=E_{\text {beam }} / 2\right)$.

